本文目录

  • 怎么理解SQL的四个事务隔离级别
  • 如何有效处理数据并发操作问题

怎么理解SQL的四个事务隔离级别

你好,我是小黄,这个题目我来回答下。

事务的隔离级别是为了解决并发问题。那么先来了解下并发带来的问题:

1)丢失更新 Lost Update:(没有加锁)

两个事务同时更新一行数据,最后一个事务的更新会覆盖掉第一个事务的更新,从而导致第一个事务更新的数据丢失,这是由于没有加锁造成的。

2)脏读Dirty Reads:(没有隔离)

一个事务看到了另外一个事物没有提交的更新数据。这是事务没有隔离造成的。

3)不可重复读:Non-Repeatable Reads

在同一事务中,多次读取同一数据但是返回不同的结果,也就是有其他事务更改了这些数据。

4)幻读:Phantom Reads 并发造成的

一个事务在执行过程中读取到另一个事务已提交的插入数据。就是说在第一个事务开始时,读取到一批数据,但是伺候另一个事务又插入新数据并提交,此时第一个事务又读取到这批数据但是发现多出了一条,貌似产生幻觉一样。这是并发造成的。

接下来我们说说这四个隔离级别,

1)未提交读(Read Uncommitted):一个事务能够读取到 别的事务中没有提交的更新数据。事务可以读取到未提交的数据,这也被称为脏读(dirty read)。

所以这种级别很有可能读到脏数据,隔离级别最低。

2)提交读(Read Committed):一个事务只能读取到别的事务提交的更新数据。

一般我们提交读就可以了。只能读取到已经提交的数据。即解决了脏读,但未解决不可重复读。(oracle默认的)

3)可重复读(Repeated Read):保证同一事务中先后执行的多次查询将返回同意结果,不受其他事务的影响。这种隔离级别可能出现幻读。(mysql默认的)

4)序列化(Serializable):不允许事务并发执行,强制事务串行执行,就是在读取的每一行数据上都加上了锁,读写相互都会阻塞。这种隔离级别最高,是最安全的,性能最低,不会出现脏读,不可重复读,幻读,丢失更新。

那么怎么设置隔离级别呢

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; //设置提交读隔离级别

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; //设置序列化隔离级别

以上请参考。

若有疑问,欢迎留言评论,谢谢。

如何有效处理数据并发操作问题

想要知道如何处理数据并发,自然需要先了解数据并发。

什么是数据并发操作呢?

就是同一时间内,不同的线程同时对一条数据进行读写操作。

在互联网时代,一个系统常常有很多人在使用,因此就可能出现高并发的现象,也就是不同的用户同时对一条数据进行操作,如果没有有效的处理,自然就会出现数据的异常。而最常见的一种数据并发的场景就是电商中的秒杀,成千上万个用户对在极端的时间内,抢购一个商品。针对这种场景,商品的库存就是一个需要控制的数据,而多个用户对在同一时间对库存进行重写,一个不小心就可能出现超卖的情况。

针对这种情况,我们如何有效的处理数据并发呢?

第一种方案、数据库锁

从锁的基本属性来说,可以分为两种:一种是共享锁(S),一种是排它锁(X)。在MySQL的数据库中,是有四种隔离级别的,会在读写的时候,自动的使用这两种锁,防止数据出现混乱。

这四种隔离级别分别是:

  • 读未提交(Read Uncommitted)
  • 读提交(Read Committed)
  • 可重复读(Repeated Read)
  • 串行化(Serializable)

当然,不同的隔离级别,效率也是不同的,对于数据的一致性保证也就有不同的结果。而这些可能出现的又有哪些呢?

脏读(dirty read)

当事务与事务之间没有任何隔离的时候,就可能会出现脏读。例如:商家想看看所有的订单有哪些,这时,用户A提交了一个订单,但事务还没提交,商家却看到了这个订单。而这时就会出现一种问题,当商家去操作这个订单时,可能用户A的订单由于部分问题,导致数据回滚,事务没有提交,这时商家的操作就会失去目标。

不可重复读(unrepeatable read)

一个事务中,两次读操作出来的同一条数据值不同,就是不可重复读。

例如:我们有一个事务A,需要去查询一下商品库存,然后做扣减,这时,事务B操作了这个商品,扣减了一部分库存,当事务A再次去查询商品库存的时候,发现这一次的结果和上次不同了,这就是不可重复读。

幻读(phantom problem)

一个事务中,两次读操作出来的结果集不同,就是幻读。

例如:一个事务A,去查询现在已经支付的订单有哪些,得到了一个结果集。这时,事务B新提交了一个订单,当事务A再次去查询时,就会出现,两次得到的结果集不同的情况,也就是幻读了。

那针对这些结果,不同的隔离级别可以干什么呢?

“读未提(Read Uncommitted)”能预防啥?啥都预防不了。

“读提交(Read Committed)”能预防啥?使用“快照读(Snapshot Read)”方式,避免“脏读”,但是可能出现“不可重复读”和“幻读”。

“可重复读(Repeated Red)”能预防啥?使用“快照读(Snapshot Read)”方式,锁住被读取记录,避免出现“脏读”、“不可重复读”,但是可能出现“幻读”。

“串行化(Serializable)”能预防啥?有效避免“脏读”、“不可重复读”、“幻读”,不过运行效率奇差。

好了,锁说完了,但是,我们的数据库锁,并不能有效的解决并发的问题,只是尽可能保证数据的一致性,当并发量特别大时,数据库还是容易扛不住。那解决数据并发的另一个手段就是,尽可能的提高处理的速度。

因为数据的IO要提升难度比较大,那么通过其他的方式,对数据进行处理,减少数据库的IO,就是提高并发能力的有效手段了。

最有效的一种方式就是:缓存

想要减少并发出现的概率,那么读写的效率越高,读写的执行时间越短,自然数据并发的可能性就变小了,并发性能也有提高了。

还是用刚才的秒杀举例,我们为的就是保证库存的数据不出错,卖出一个商品,减一个库存,那么,我们就可以将库存放在内存中进行处理。这样,就能够保证库存有序的及时扣减,并且不出现问题。这样,我们的数据库的写操作也变少了,执行效率也就大大提高了。

当然,常用的分布式缓存方式有:Redis和Memcache,Redis可以持久化到硬盘,而Memcache不行,应该怎么选择,就看具体的使用场景了。

当然,缓存毕竟使用的范围有限,很多的数据我们还是必须持久化到硬盘中,那我们就需要提高数据库的IO能力,这样避免一个线程执行时间太长,造成线程的阻塞。

那么,读写分离就是另一种有效的方式了

当我们的写成为了瓶颈的时候,读写分离就是一种可以选择的方式了。

我们的读库就只需要执行读,写库就只需要执行写,把读的压力从主库中分离出去,让主库的资源只是用来保证写的效率,从而提高写操作的性能。

当然,提高数据并发能力的方法还有很多,也还有很多可以研究的技术,我们可以一起共同讨论,共同进步。